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synopsis 

Equations have been derived that relate the statistical moments of uncorrected and spread- 
ingcorrected chromatograms for a general form of the spreading function in gel permeation 
chromatography of polydisperse macromolecules. The first moment (centroid) of the chro- 
matogram is shown to be directly given by the centroid, In M', of a suitably defined molecular 
weight distribution function of the polydisperse sample, regardless of the position of the 
calibration dependence, provided it is linear. Both the molecular weight M* associated with 
the centroid of the chromatogram and its second central moment (variance) are but little 
sensitive to the shape of sample molecular weight distribution and can be easily calculated 
from the polydispersity index MJM,, at least for polymers of a not excessively broad distri- 
bution. The derived relations are shown to find application in the calibration of GPC columns 
by means of characterized, polydisperse standards and in the separation of independent con- 
tributions to peak width which originate in sample polydispersity and in band broadening 
processes in the column. Improved column- and packing performance criteria are also proposed. 

INTRODUCTION 
For a correct interpretation of data in gel permeation chromatography 

(GPC) it is in many instances desirable to know how the basic characteristics 
of the molecular weight distribution (MWD) of the studied polydisperse 
sample (mode, centroid, width, asymmetry, etc.) influence the shape of the 
recorder trace (sometimes also of the spreading-corrected chromatogram). 
Thus, when nearly monodisperse fractions of the polymer to be studied are 
not available for calibration purposes, one has to resort to secondary Cal i -  
bration standards of appreciable polydispersity; the molecular weight MGpc 

corresponding to the elution volume at the peak maximum has been shown' 
to depend on the type of MWD of the standard (MGpc = (M, - M,)" for the 
logarithmic normal, MGpc = M,,, for the Schulz-Zimm distribution, etc., 
where M, is the number-average and M, the weight-average molecular 
weight). It is also often necessary to separate the independent contributions 
to the peak width that stem from the sample polydispersity and, on the 
other hand, from the kinetic phenomena in the chromatographic column, 
e.g., in the calibration of ~preading ,~ .~  verification of the governing mech- 
anism of peak broadening,&' characterization of the separation efficiency 
of individual columns or packings,a'2 etc. 

In this paper it is shown how the moment analysis of elution bands can 
help to solve these and similar problems. First, general relations are derived 
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between the respective statistical moments of the actual (uncorrected) re- 
corder trace, of the spreading-corrected chromatogram, and of the spreading 
function in its general form. Next, an equation is presented that connects 
the molecular weight M*, corresponding to the elution volume of the cen- 
troid of chromatogram, with the centroid of a suitably defined MWD of the 
polymer sample. Using several examples of two-parameter model distri- 
bution curves it is shown that-in contrast to the quantity MGpc-the mo- 
lecular weight M* can be unequivocally determined from the number- and 
weight-average molecular weight of the sample, at least for polymers with 
moderately broad distributions. 

Finally, the second and third central moments of the spreading-corrected 
chromatogram are shown to be related to the corresponding central mo- 
ments of MWD. Again, on the basis of several model distributions it is 
demonstrated that, for polymers which are not excessively polydisperse, 
the relationship for the second moment is not very sensitive to the actual 
shape of MWD and can be employed in predicting the effect of sample 
polydispersity on the width of its chromatogram. 

THEORETICAL 

Moments of Uncorrected and Corrected Chromatograms 

If we define the corrected chromatogram w (i.e., a chromatogram which 
would have been observed in the absence of spreading) by the equation 

where u is the elution volume and fw (M), the mass distribution function 
of molecular weight, is defined in such a manner that the product f w  ( M )  
dMgives the mass fraction of the polymer having molecular weight between 
Mand M + dM, the connection between the experimentally observed, un- 
corrected chromatogram g(u) and the spreading-corrected function w is 
given by the Tung integral equation13 

G(u,y) is the so-called spreading function and represents the response-as 
a function of the elution volume u - o f  the chromatograph to an infinites- 
imally short injection of a strictly monodisperse fraction having the reten- 
tion volume y.  We shall assume throughout this paper that all functions 
in eq. (2) are normalized, i.e., 

Ub 

s u b g ( u )  du = sub w(u) d u  = G(u,y) d u  = 1 (3) 
Ua Va uo 

and the integration limits in eqs. (2) and (3) cover the whole range of elution 
volume; where no confusion can arise, the integration limits will be omitted 
in the following derivation. 
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Without serious loss of generality, we may assume that the parameter y 
in the spreading function is identical with its first statistical moment, i.e., 

(It can be easily deduced that this is true if G(u, y )  is Gaussian even with 
nonuniform (i.e., elution-volume dependent) spreading. The so-called ex- 
ponentially modified Gaussian spreading f ~ n c t i o n ' ~ J ~  is usually written in 
the form 

and its first moment is 

JuGe(u, y')  du = y' + T 

However, if we introduce y = y' + T into eq. (5), the spreading function 

satisfies requirement (4). ] 

in eq. (2) by 
Let us denote the first moments about zero of the functions appearing 

and the corresponding higher central moments by 

p k  = J ( u  - pPg(u) du 

vk = J ( u  - V ; > ~ W ( U )  du 

Using eqs. (21, (31, and (4) we may write for pi 
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or 

Thus, we see that the respective centroids of the corrected and uncorrected 
chromatogram are equal for a very broad class of spreading functions that 
satisfy eq. (4). 

For the second moment we have from eq. (2) 

and this can be written, using eq. (91, as 

The last term obviously vanishes; hence, in view of eqs. (3) and (8) we have 
thus derived the general result 

an equation found p r e v i o u ~ l y ~ ~ ~  to be valid for a special case of the Gaussian 
spreading function. 

In a completely analogous manner we find for the higher central moments 
the relations 

Moments of Chromatogram and MWD 

The results derived so far are quite general and do not require any sim- 
plifying assumptions except the rather weak one in eq. (4). In the following 
we shall assume for the sake of simplicity that the calibration dependence 
of the column is linear, 

l n M =  A - Bu (13) 

We now want to derive the relationships between the moments of the 
corrected chromatogram and those of the molecular weight distribution. 
Let us first examine the molecular weight M* that corresponds to the first 
statistical moment of the chromatogram, p; z w;. We have from eq. (13) 

w; = (A /B)  - (1/B) In M* (14) 
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On the other hand, from its definition we can write for V; 

By virtue of eq. (1) this assumes the form 

as f,, being a distribution, must be normalized. Comparing eqs. (14) and 
(15), we deduce immediately that 

In M* = s m l n  M f,(M) dM (16) 
0 

(It will be shown below that the integral in the last equation exists for 
practically important distributions.) 

This result can be given a more lucid interpretation in terms of a dis- 
tribution function fL with In M as a new random variable; with fL defined 
by 

eq. (16) takes the form 

Accordingly, In M* is the first moment of the distribution f i .  
The integral in eq. (16) can be evaluated analytically for several two- 

parameter functions (see, e.g., Ref. 16) often used in modeling the molecular 
weight distributions of polymeric materials, viz., the Schulz-Zimm (SZ) dis- 
tribution: 

where 

( l l b )  = M,/M,, - 1 

the logarithmic normal (LN) distribution 

8.\/.rr M 

(19') 

(20) 
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where 

a2 = 2 In (Mw/Mn) (20') 

and the Rosin-Rammler-Tung (RR) function 

where 

As shown in the Appendix, the results have the form 

In M& = In M,, + $(b + 1) - In b (22) 

where $(XI = d In r (s)/dx, 

In M& = In M,, + a2/4 (23) 

and 

In M;;R = In M,, - C/n + In r(l - 1-n) (24) 

where C = 0.577216 - .  . is Euler's constant. 

and (14) 
For the central moments vk we can similarly write by virtue of eqs. (13) 

or, again utilizing the distribution fL, 

which, in view of eq. (18), assumes the simple form 

where p.lk) is the Kth central moment of the distribution fL, 

r m  

(26) 

(27) 

and B > 0 is the slope of the linear calibration dependence (13). 
Expressions for the second and third central moment v2 and vg can again 

be derived in a closed form by evaluating the integral in eq. (25) for the 
three above-mentioned model distributions (see the Appendix); thus, 
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where +'(x) = d+/dx, 

and finally 

B3v3,sz = +(b + 1) +'(b + 1) - +"(b + 1) (31) 

B3w3,m = 0 (32) 

(33) B3v3,m =. --+"(l)/n3 z 2.4041n-3 

DISCUSSION 

The assertion that the respective centroids of the uncorrected and cor- 
rected chromatogram are equal represents a useful result per se. No such 
statement can be made about the elution volume at the peak maximum, 
as follows from the mere fact that for unimodal chromatograms consisting 
of two strongly overlapping peaks efficient correction procedures can reveal 
a bimodal character of the corrected chr~matogram.'~J~ Even here, however, 
eq. (9) remains valid and can be used, e.g., in checking the accuracy of 
various methods devised to solve the Tung integral equation. The main 
importance of eq. (9) in the present context lies in that it enables the general 
relationships (10)-(12) between the central moments to be established. Prior 
to turning our attention to the utility of these equations, we shall examine 
the moments of the corrected chromatogram and their relation to the char- 
acter of sample MWD. 

First Moment 

It follows from eqs. (16) and (17) that the molecular weight M* corre- 
sponding to the first moment of the chromatogram is independent of the 
constants A and B, which define the position of the molecular weight cal- 
ibration dependence, provided that it is linear (cf. Ref. 19). This is a very 
important result which can be utilized, for example, when a column set is 
to be calibrated by means of characterized, polydisperse polymer standards: 
If the quantity M* can be determined from known characteristics of the 
given standard (a problem to be discussed below), one point on the sought 
calibration dependence is obtained for each standard by plotting In M* 
against the experimentally accessible quantity pi. If need be, the calibration 
established in this manner can be further improved by the iteration pro- 
cedure described earlier.3 

Equations (221424) show that, for the three model distributions inves- 
tigated, In M* depends on the number-average molecular weight and on 
that parameter of the respective distribution which is connected with its 
width MJM,  P - s e e  eqs. (19'1, (201, and (21'). Accordingly, M* can be 
always determined from the characteristics M,, and M, 
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The right-hand sides of eqs. (22)-(24) may be expanded in powers of 
(P - l), where P = MJM,,; thus 

In(M&/M,,) 

ln(M&/M,,) 2 (1/2)(P - 1) - (1/4)(P - 1)2 + (1/6)(P - 

ln(M&JM,,) 

(1/2)(P - 1) - (1/12)(P - U2 + (1/120)(P - U4 - - - 
- - + * 

(1/2)(P - 1) + 0.1899(P - 1)3'2 - 0.2204(P - 1)2 + . - - 
where the leading terms are identical, indicating that for reasonably small 
values of P the three functions must be similar. This is confirmed by Figure 
1, where the ratio M*/M,, calculated for the three model distributions from 
eqs. (22)-(24) is plotted as a function of the polydispersity index P; we see 
that, at least in the region of moderately broad distributions (P I 1 8 ,  the 
three functions can be approximated by a single master curve. (In fact, the 
dependences for the SZ and RR functions run close together up to the largest 
values of P, whereas the curve for the LN distribution begins to deviate 
downwards near P - 2.) By means of polynomial regression of the data in 
Figure 1 in the region P I 1.8, the equation of the master curve has been 
therefore derived in the form 

ln(M*/M,) = (1/2)(P - 1) + O.O157(P - 1)2 - 0.1438(P - 1)3 (34) 

and it is also plotted as a full line in Figure 1. 
The advantages of using, for a polydisperse polymer, the centroid of the 

chromatogram with the associated molecular weight M* instead of the 
elution volume at the peak maximum and the value MGpc are clearly re- 
vealed in Table I, which summarizes the relevant data for the Schulz-Zimm 

2.5 

M'IM, 

2.0 ' 

1.5 - - 

1.0 ' 
- 2  -1 0 

log (P-1) 

Fig. 1. Molecular weight, MI,  corresponding to the first moment of chromatogram, as a 
function of sample polydispersity P MJM,,: (0) Schulz-Zimm distribution [eq. (22)]; (a) 
logarithmic normal distribution [eq. (23)]; (0) Rosin-Rammler-Tung distribution [eq. (24)]; full 
line is the master curve calculated from eq. (34). 
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TABLE I 
Comparison of Mcpc and M' for Schulz-Zimm and Logarithmic Normal Distributions of 

Different Polydispersity (M, = 105) 

P- 1 

Parameter 0.1 0.2 0.3 0.5 0.8 

1.1 
1.049 
1.05 
1.049 
1.051 
1.051 
4.9 
0.09 
0.12 

- 0.2 
0 

1.2 
1.095 
1.102 
1.095 
1.105 
1.105 
9.5 
0.6 
0.28 

- 0.9 
0 

1.3 
1.140 
1.153 
1.140 
1.159 
1.162 

1.1 
0.52 

- 1.6 
0.3 

14 

1.5 
1.225 
1.258 
1.225 
1.266 
1.284 

22.5 
2.7 
0.6 

1.4 
- 3.2 

1.8 
1.342 
1.418 
1.342 
1.400 
1.492 

34.2 
5.7 
1.3 

-4.1 
6.6 

a M G X ~ Z  = M,, MGpc,W = (Mn M,)%. 
A value calculated from the regression equation (34). 
From the series in Eq. (34) truncated after the first term, M: = M. exp [%(P - 111. 

and logarithmic normal distributions. The quantity M* is manifestly much 
less sensitive to the shape of MWD, and the differences between the values 
calculated for the two model functions remain well within the limits of 
experimental error of GPC for polydispersities below P = 1.8; even the 
simplified version of eq. (341, truncated after the first term, seems to yield 
reasonably accurate values of M*. On the other hand, the deviations of the 
values of Mcpc between the two distributions become quite large for P > 
1.3. 

If the molecular weight distribution of a calibration standard is known 
(this situation arises, e.g., when GPC columns are to be calibrated by dextran 
standards produced by Pharmacia Fine Chemicals, Uppsala, Sweden), the 
required value of M* can be easily calculated from eq. (18). 

Second Moment 

Figure 2 shows the dependence of the product B2v2 on Pas obtained from 
eqs. (28)-(30). Again, it is true that for moderately broad distributions (say 
P I 2) the points lie sufficiently close together to justify an approximate 
master curve to be plotted through the data. The full line corresponds to 
the regression equation 

B2v2 (P - 1) - (1/2)(P - 1)2 + 0.1464(P - 1)3 (35) 

calculated from the points that lie below P = 2; the two leading terms 
common to the series expansions of the formulae (28) and (29) in powers of 
(P - 1) have been retained in this expression. 

Equation (35) in combination with the formula (10) can be now used for 
calibration of the peak broadening using direct-flow (as opposed to reverse- 
flow20) chromatograms of polymers with known values of P & M,/M,, 
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1 . I  2.0 

-2  -1 0 
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Fig. 2. Second moment v2 as a function of sample polydispersity P MJM,. Notation as 
in Figure 1; full line is the master curve calculated from eq. (35). 

provided that their distribution is not excessively broad. Thus, the variance 
of the spreading function at the elution volume of the peak centroid is 
calculated from 

where the second central moment p2 of the experimental chromatogram is 
easily accessible and B is the slope of the molecular weight calibration 
dependence, which must be known in advance (if it is curvilinear, the local 
slope at u = pi can be u ~ e d ~ . ~ ~ ) .  

Other instances where it is necessary to calculate the contribution of 
polydispersity to chromatogram width include studies of mass transfer in 
the mobile and stationary phase@' or accurate determination of the poly- 
dispersity index for narrow-distribution polymers by means of GPO or 
recycle GPC.22 Here it is usually a s s ~ m e d ~ - ~ ~ ~ ~  that the distribution of the 
studied polymer obeys the logarithmic normal function because of the sim- 
plicity of formula (29), probably first noticed by Tung.13 The results pre- 
sented here indicate that this approximation is valid not only for the nearly 
monodisperse primary calibration standards but with reasonable accuracy 
also for polydisperse polymers. Knox and McLennanS analyzed theoreti- 
cally the contribution of polydispersity to the width of GPC bands, assuming 
the sample distribution to be Gaussian, and derived the formula (written 
in the present notation) 

B2w2 = (P - 1x1 + a) 

where a = (11/4)(P - 1) + (137/12)(P - 112 + - .  . . In order to be able to 
characterize the polydispersity by the simplest parameter P = MJM,,, these 
authors, however, assumed the number distribution fn(M) to be Gaussian 
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vn(M) dM gives the mole fraction of the polymer having molecular weight 
between M and M + dM] and mistakenly inserted fn instead of fw into eq. 
(1). (This is incorrect because the response of all detectors is proportional 
to mass-and not to amount-of-substanceoncentration in the eluate.) In 
addition, the difference between Mn and M* was also neglected in their 
derivation. It is, however, possible, utilizing the known relation between fn 

and f m  

to derivez4 the correct formula for uz on the assumption that fn(M) is Gaus- 
sian; the result reads 

(36) BZvz = (P- 1x1 - a*) 

where 

a* = (1/2)(P - 1) + (4/3)(P - 112 + * - (36') 

As a consequence of the change of sign in the correction term a*, the net 
result is that the Knox-McLennan formula somewhat overestimates the 
effect of polydispersity. The error is, however, rather small for samples 
having P close to unity studied in Ref. 6 (3.4% at P = 1.01, 11% at P = 
1.03) and becomes appreciable (48%) only at P = 1.1, where the Gaussian 
model breaks down anywaya because an infinite series needed in the de- 
rivation begins to diverge at P N 1.11. 

Yau et al.l0 proposed to characterize the performance of chromatographic 
columns and packings in GPC by means of the specific resolution, 

and the packing resolution factor, 

where B is again the slope in eq. (13), u is the standard deviation of chro- 
matogram of some narrowdistribution polymer (u = d p z  in our notation), 
and L is the column length. Physically, R,, is the chromatographic reso- 
lution of the column for a pair of polymers that differ by a factor of 10 in 
their molecular weight (cf. Refs. 10 and ll), and the packing resolution 
factor is R,, normalized to unit column length. However, it has been re- 
peatedly stressed that even with the best available polymer fractions the 
contribution of their polydispersity to the total peak width can be 
a p p r e ~ i a b l e ~ ~ ~ ~  so that the performance criteria as defined above can vary 
considerably from sample to sample not only as a result of molecular weight 
dependence of the separation efficiency, but merely due to the varying 
quality of standards employed in their determination. Clearly, modified 
criteria are needed that are free from this undesirable variation; on the 
basis of the above results, corrected column- and packing performance cri- 
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teria can be defined as 

and 

where y2 is the variance of the spreading function which, as follows from 
its definition, satisfies the above requirement. From eqs. (10) and (35) we 
have 

where F(P - 1) = (P - 1) - (1/2)(P - 1)2 + . - is the right-hand side of 
eq. (35). In view of formula (37) this can be rewritten as 

Rsp,cor = [l/RZp - F(P - 1)/0.5762]-' (41) 

The effect of this correction may be seen from the data collected in Table 
11. It is important to note that the correction of the quantity R,, for sample 
polydispersity is the more significant, the higher the actual separation 
efficiency of the column; this is understandable since highly efficient col- 
umns will have small y2 and the term u2 that reflects the polydispersity 
will dominate in the expression (10) for the actual peak width. When the 
corrected performance criteria are to be calculated from eq. (41), it is im- 
portant that the peak variance be determined accurately, preferably by an 
integration of the whole chromatogram according to eq. (8a). In fact, when 
the correction according to eq. (41) was attempted with some data taken 
from the 1iterature,8.l2 physically impossible values were obtained, indicat- 
ing that the method used by the authors in the determination of p2 (i.e., 

TABLE I1 
Column Performance Criterion and Its Correction for Sample Polydispersity 

Total column Polystyrene 
length molecular 
(cm) Packing weight RSP Rsp,mr 

488 
488 
200 
120 
100 
60 

25 
25 
25 
10 

~ 

Data from Ref. 10 
Styragel 97,000 
Porasil 97,000 
Vit-X 97,000 
pStyragel 97,000 
Lichrospher 97,000 
PSM silica 97,000 

Lichrospher 500 51,000 
PSM 800 51,000 
Lichrospher lo00 97,000 
PSM 1500 97,000 

Data from Ref. 11 

1.27 
1.56 
0.97 
1.14 
2.50 
2.72 

1.6 
2.15 
2.05 
1.90 

1.34 
1.69 
1.00 
1.18 
3.20 
3.71 

1.92 
3.23 
2.38 
2.16 
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from the peak width at half height) can seriously underestimate the actual 
second moment because then the tailing and skewing at both extreme ends 
of the chromatogram are not properly accounted for. 

Third Moment 

It has been shown above that the dependences of w; and w2 on the poly- 
dispersity index are not very sensitive to the actual shape of MWD of the 
investigated polymer, unless its width is excessively large. In contrast to 
this finding, the skew of the corrected chromatogram as measured by its 
third moment w3 is appreciably different for the three model distributions. 
As can be easily verified from eqs. (28)-(331, the skew parameter ys = 
W ~ / W ; / ~  is zero for the logarithmic normal distribution, constant (independent 
of P) and positive for the Rosin-Rammler-Tung function (y4RR = 1.14), and 
positive and Pdependent for the Schulz-Zimm distribution, where, for P 
= 1.5, 1.8, 2.0, and 3, ys,sz equals 2.1, 1.5, 1.31, and 0.96, respectively. 

This has serious consequences for the determination of the actual shape 
of the spreading function G(u,y), if its possible inherent skew is to be taken 
into account. In several paperssB procedures have been proposed for the 
determination of the parameters of a generalized, asymmetric spreading 
function which is assumed in these instances in a special form, either ac- 
cording to eq. (5) as in Ref. 28 or as a truncated Gram-Charlier series.s27 
As follows from eq. (11) the third moment of the uncorrected chromatogram 
(which alone is experimentally available) is given as a sum of the third 
moment of the spreading function, y3 (the quantity to be determined), and 
of the third moment of the corrected chromatogram, w3, which can be, 
however, very different, depending on the shape of sample MWD. 

It therefore seems that attempts to evaluate the asymmetry of the actual 
spreading function of the given system of GPC columns, based on the mea- 
sured skew of experimental chromatograms, are hardly justified unless the 
shape of the molecular weight distribution of the calibration standard(s) is 
accurately known. 

APPENDIX 
For the Schulz-Zimm distribution we have to evaluate 

Using the integral (Ref. 29, formula 4.352/1) 

we see that 

In M& = +(b + 1) - In u 

and eq. (22) in the text follows directly because a = b/M, (cf. Ref. 16). 
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For the RR function we need the integral 

In M& = S r l n  M -  n . p . Mn-l exp(-pM") dM 

Substituting m = Mn, dM = (1/Mn-l) dm, we have 

In M& = @/n) S r l n  m exp(-pm) dm 

Formula 4.331/1 in Ref. 29 states that 

50 that 

In M& = -(l/nXC + l n p )  

but for the RR distribution (cf. Ref. 16) 

In M, = -(l/n) In p - In r(l - l /n) 

and eq. (24) follows. 

is Gaussian with mean M,; accordingly, 
For the LN distribution it is known13 that both the uncorrected and corrected chromatogram 

In M& = In Mo (44) 

and eq. (23) is shown to be valid because (cf. Ref. 16) 

M,, = M, exp(-a2/4) 

In order to derive the relations for u2 and w3 in the case of the SZ function, we have to 
evaluate 

for k = 2 and k = 3. 
Expanding the expression in brackets and utilizing eq. (42) and the integrals 

(Ref. 29, formula 4.358/3), we obtain after a straightforward algebra eqs. (28) and (31) in the 
text. 
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In a completely analogous manner for the case of the RR distribution we can make use of 
eq. (43) and of the integrals 

Jge-pz (In XY dx = (1/p)[a2/6 + (C + In pfl, p > 0 

(Ref. 29, formula 4.335/3) in proving the validity of eqs. (30) and (33). 
For vZsLN we have 

By substituting (l/*)ln(M/MJ = x, (l/i?M) dM = dx, we obtain 

= (l/t/a) J" $2x2e-z* dr = ~2 
- m  

in agreement with eq. (29). 

matogram is in this case Gaussian.13 
Finally, the third moment v3 is obviously zero for the LN distribution because the chro- 
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